Downpours and Droughts: Changing Extremes in a Warming World

Dr. Erich Osterberg
Dartmouth College Earth Sciences

The Earth Has Warmed ~2°F since 1900

Take Home Messages

- Downpours (extreme rainfall) jumped up 50% in 1996
 - Caused by Hurricanes, Nor'easters and thunderstorms
- Drought is more frequent in NH & VT than you may think and has real impacts
- The future:
 - More downpours likely
 - More summer drought?

We Studied Rainfall Data from the Best 116 Weather Stations spanning 1900-2014

Extreme Rainfall Jumped 53% in 1996

Which Storms are More Extreme since 1996?

- Hurricanes are the biggest driver (48%)
- T'storms (25%) and Nor'Easters (15%) also causing more extreme rainfall

Summer Flooding is Increasing in Response

% Change in Summer Extreme Streamflow Events in 2001-2012 compared to 1977-1988

Federal Disaster Spending in New Hampshire

U.S. Drought Monitor Northeast

July 17, 2018

(Released Thursday, Jul. 19, 2018)
Valid 8 a.m. EDT

As N.H. Drought Spreads, Officials Seek To Limit Water Use

nhpr

By ANNIE ROPEIK + JUL 12, 2018

Intensity:

D0 Abnormally Dry

D1 Moderate Drought

D2 Severe Drought

D3 Extreme Drought

D4 Exceptional Drought

Author:

Eric Luebehusen
U.S. Department of Agriculture

http://droughtmonitor.unl.edu/

U.S. Drought Monitor Northeast

October 23, 2018

(Released Thursday, Oct. 25, 2018)
Valid 8 a.m. EDT

Drought continues to plague northern Vermont, leaving farms and wells dry

STOWE REPORTER

By Elizabeth Gribkoff | VTDigger.org Oct 18, 2018 💂

Intensity:

D0 Abnormally Dry

D1 Moderate Drought

D2 Severe Drought

D3 Extreme Drought

D4 Exceptional Drought

Author:

Eric Luebehusen
U.S. Department of Agriculture

http://droughtmonitor.unl.edu/

Some Wells in Northern VT are Currently Failing

U.S. Drought Monitor Northeast

September 27, 2016

(Released Thursday, Sep. 29, 2016) Valid 8 a.m. EDT

http://droughtmonitor.unl.edu/

Drought causes wells to dry up across NH

By Breanna Edelstein bedelstein@eagletribune.com Oct 4, 2016

The Eagle-Tribune

VALLEY NEWS

Wells Across New England Coming Up Dry Amid Drought

By Michael Casey Associated Press

Thursday, September 22, 2016

The Boston Blobe

Drought continues to spread across Mass.,

2016 Drought: Water Use Restrictions and Bans

Legend

- County Boundary
- Town Boundary

- 166 community restrictions or bans
- 12 towns setup emergency water sites
- 450 wells replaced or deepened

Municipality or Water System Status

- Outdoor Use Ban
- Restriction
- Voluntary Restriction or Ban

Drought Condition

- Abnormally Dry
- Moderate Drought
- Severe Drought
- Extreme Drought

What do These Drought Classifications Mean?

Intensity:

D0 Abnormally Dry Occurs every 6-9 months

D1 Moderate Drought Occurs every year

D4 Exceptional Drought

D2 Severe Drought Occurs every 3 years

D3 Extreme Drought Occurs every 10 years

Occurs every 50-100 years

NH and VT Drought History: 2000-Today

New Hampshire Drought History

Hillsborough, Merrimack & Belknap

Stratford & Rockingham Counties

Historic Northeast Drought of 1963-1966

New Hampshire Water Use Statistics

How Do We Use Our Water at Home?

Climate Models Show the Northeast Getting Wetter Overall in the Future

More Frequent Extreme Rainfall Events from Hurricanes due to Warmer Ocean and More Vapor

More Frequent T'Storms from Wavier Jet

Summer Rain is Projected to Remain Steady in the Future

And Summer Temperatures are Projected to Increase 5-12°F!

Take Home Messages

- Downpours (extreme rainfall) jumped up 50% in 1996
 - Caused by Hurricanes, Nor'easters and thunderstorms
- Drought is more frequent in NH & VT than you may think and has real impacts
- The future:
 - More downpours likely
 - More summer drought is possible

NH & VT Drought and Wetness History

NH/VT has Warmed: 2-4°F since 1895 Winter is Warming the Fastest

Warming since 1970 Can Only be Explained with Human Greenhouse Gases

Bottom Line: In order to explain temperature rise since ~1960, one MUST include human CO₂.

Not All the Atlantic Ocean Warming is from Human Activities

Arctic Amplification Causes Wavier Jet Stream?

Arctic Amplification(AA)
leads to decreased
pressure gradient and
weaker winds.

May cause wavier jet steam and more extreme thunderstorms and Nor'Easters

(Francis and Vavrus 2012; Cohen et al., 2018)

Solar Radiation Contributed to Early 20th Century Warming, but Sun has been Weakening since 1960

Warming since 1960 is NOT from the Sun!!

Solar radiation has been declining since 1960

Most CO₂ is from Electricity and Transportation

Coal produces 2x as much CO₂ per BTU as Natural Gas Coal produces 1.5x as much CO₂ per BTU as Oil

US CO₂ Emissions by Source & Sector (2011)

Climate Forcing from 1750-2011

Some CO₂ Facts

- Humans emit
 100+ TIMES more
 CO₂ than
- CO₂ has a fossil fuel chemical fingerprint
- CO₂ traps heat, raising temp.
- Without CO₂
 Earth's average
 temp = -5°F!!
 (today = 57°F)

Temperature and CO₂ are Closely Linked

U.S. Freshwater Withdrawals (2010)

^{*}Livestock is approximately less than 1% of total use and is not included.

^{*}Data comes from Maupin, M.A., Kenny, J.F., Hutson, S.S., Lovelace, J.K., Barber, N.L., and Linsey, K.S., 2014, Estimated use of water in the United States in 2010: U.S. Geological Survey Circular 1405, 56 p., http://dx.doi.org/10.3133/cir1405.

May 2018 Period: 1895–2018

Statewide Average Temperature Ranks

May 2018 Period: 1895-2018

Statewide Average Temperature Ranks

August 2018

Period: 1895-2018

August 2018

Period: 1895-2018

Statewide Average Temperature Ranks

September 2018 Period: 1895–2018

September 2018

Period: 1895-2018

May-July 2018 Period: 1895-2018

Statewide Average Temperature Ranks May-July 2018 Period: 1895-2018

Palmer Drought Severity Index September, 2016

Category	Description	Possible Impacts
D0	Abnormally Dry	Going into drought: short-term dryness slowing planting, growth of crops or pastures Coming out of drought: some lingering water deficits pastures or crops not fully recovered
D1	Moderate Drought	 Some damage to crops, pastures Streams, reservoirs, or wells low, some water shortages developing or imminent Voluntary water-use restrictions requested
D2	Severe Drought	 Crop or pasture losses likely Water shortages common Water restrictions imposed
D3	Extreme Drought	 Major crop/pasture losses Widespread water shortages or restrictions
D4	Exceptional Drought	 Exceptional and widespread crop/pasture losses Shortages of water in reservoirs, streams, and wells creating water emergencies

Hurricane Irene: August, 2011

July 2013 & 2017 Thunderstorms

Type of Use	Gallons per Capita	Percentage of Total Daily Use
Showers	8.8	19.5%
Clothes Washers	10.0	22.1%
Toilets	8.2	18.0%
Dishwashers	0.7	1.5%
Baths	1.2	2.7%
Leaks	4.0	8.8%
Faucets	10.8	23.9%
Other Domestic Uses	1.6	3.4%

Source: Handbook of Water Use and Conservation, Amy Vickers